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Consider an aggregative model of economic growth with changing technology 
and tastes, in which investment is irreversible. It is shown that initial decisions in 
finite-horizon optimal programs are insensitive to changes in terminal stocks, 
provided the horizon is long enough. This generalizes Brock’s result, which was 
proved assuming investment to be reversible. The irreversibility constraint does not 
allow one to follow Brock’s method of proof, using the dual (Shadow Price) 
properties of optimal programs. An alternative method of proof is developed, using 
a primal approach, and exploiting dynamic programming arguments. Journal of 
Economic Literature Classification Number: 111. 

1. INTRODUCTION 

An interesting problem in the theory of optimal allocation of resources 
over a finite-horizon is to examine the sensitivity of such allocations to the 
level of terminal (end of horizon) targets. 

Restricting our attention to an aggregative model of economic growth 
(with changing technology and tastes), the definitive treatment of this 
problem is contained in a paper by Brock [ 1 ]. ’ (Simultaneously, and quite 
independently, Mirrlees and Hammond [9] also arrived at several of the 
results contained in Brock’s paper). 

* The research reported in this note was supported by a National Science Foundation 
Grant and an Alfred P. Sloan Research Fellowship. Discussions with M. Majumdar. M. 
Nermuth, and D. Ray have been extremely helpful in preparing the final version of this note. 

’ For an earlier treatment of this problem, using a linear production function and quasi- 
stationary utility functions, see Chakravarty [ 31. For multisectoral versions of sensitivity 
results, see Hammond [S], McKenzie 161, and Nermuth [lo]. For a stochastic version of 
Brock’s results, see Brock and Mirman [ 2 ]. 
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One important assumption in Brock’s framework is that the existing 
amount of the single good, whether in the form of current output or 
depreciated capital stock, can be totally consumed. In other words, it is 
feasible to run down the capital stock at any rate we wish and enjoy a 
corresponding increase in consumption. 

However, it is clearly more realistic to assume that investment should be 
“irreversible,” in the sense that gross investment (net increase in capital plus 
the amount of depreciation) should be non-negative at each date. A natural 
question that arises then is the following: “If we incorporate the aspect of 
irreversibility of investment into Brock’s framework, do the sensitivity results 
he has obtained continue to be valid?“’ 

The answer to the above question turns out to be: “Yes.” This answer in 
itself is of interest, since it demonstrates the robustness of Brock’s results. 
But more intersting, I believe, is the method which leads to this answer. It 
should be noted that Brock’s method of proof, relying as it does on the 
property that optimal programs satisfy “Euler equations,” runs into 
difficulties with the added “irreversible investment” constraint, since there is 
now no way to avoid optimal solutions from being “corner solutions,” at 
least for some dates in the finite-horizon. 

A recent contribution on the optimal allocation of resources under non- 
convexities in production by Dechert and Nishimura ]4] suggests a 
technique which enables one to obtain the sensitivity results in the case of 
irreversible investment. Simultaneously, one can also obtain Brock’s results 
in the case of “reversible investment” as a special case.j This technique, 
using “value functions” associated with finite-horizon optimization problems 
(together with dynamic programming arguments) rather than the dual 
(shadow price) properties of such optimization problems, thus appears to be 
more general and convenient to solve the “sensitivity problem.“J 

2. THE MODEL 

2a. Production 

Consider an aggregative framework with changing technology, given by a 
sequence of production functions, g, (where t = 0. 1, 2, 3,...) from R, to 

* This question is briefly addressed in Brock ([ 1, pp. 75-76, footnote 41). Brock conjectures 
that his results will continue to be valid, although a different method than his might have to be 
used. 

’ This technique is also suggested by Brock’s remarks in footnotes 4 and 5 on pages 75-78 
of his paper [I]. 

’ Of course, from the point of view of decentralization of planning, the development of a 
duality theory of such optimization problems is clearly an important one. This has been done 
in a paper by Mitra and Ray 181. 



174 TAPAN MITRA 

itself. Given a nonnegative capital input x in period t, it is possible to 
produce a “current” output 4’ in period (t + l), where y = g,(x). 

The following assumtions on g, are used: 

(A.l) For t>O, g,(O)=O. 

(A.2) For t > 0, g, is strictly increasing. 

(A-3) For t > 0, g,(x) is concave and continuous for x > 0. 

The initial capital input, x, is considered to be historically given and 
positive. Capital stock is considered to depreciate at a constant rate, d, where 
0 < d < 1.’ Then we can define a sequence of total ouput functions,A (where 
t = 0, 1, 2,...) from R + to itself by 

f,(x) = g,(x) + (1 - 4x for x > 0. (2.1) 

A feasible program is a sequence (x) = (xI) satisfying 

x0=x- O<X,,l GL(x,> for t>O, 
(2.2) 

X ,+,Z(l-4x, for t > 0. 

Associated with a feasible program (x) is a consumption sequence (c) = (c,) 
given by 

C If1 =.m,>-&.I for t>O, (2.3) 

and a gross investment sequence (z) = (z,) given by 

Z ,+1=x,+,-(l--b, for t>O. (2.4) 

Combining the information given by (2.1)-(2.4), we note that current output 
is either consumed or invested: 

i&(x,) = Cl, I + Zf t I for t>O (2.5) 

and both consumption and gross investment are non-negative at each date.’ 

’ There is, of course, no difficulty in accomodating the case where the depreciation rate is 
also variable over time. This does not change any of the results or the methods of proof, as 
the reader can easily check. 

b The present framework includes the neoclassical growth model as a special case, by a 
suitable interpretation of variables. Let G,(X,L) be a constant return to scale production 
function, defined on Capital (X) and Labor (L), available at date f. Labor is assumed to grow 
exogenously at a rate n >, 0, i.e., L, = I,,(1 + n)’ for 1 > 0; L,, > 0. Capital depreciates at a 
constant rate 2, where O< d< 1. The basic neoclassical growth equation is, G,(X,, L,) = 

c,+, +x,+1 - (1 - a)X, = C,, , + Z,, , . Dividing through by L,, , , and denoting (X,/t,) by 

x,. (C,+,Ik+,) by c,+i. (Z,+,lL_,+,) by zt+I, for t > 0, we have [G,(x,, l)/(l + n)] = 

~,+~+~,,=~,t,+(~,+,-l1(1--d)l(lf~)Jx,). Th en letting g,(x) = G,(x, l)/( 1 + n) and 
d = (n + d)/(l + n). we obtain the framework described in Section 2. 
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The feasible program (2,) given by 

x0 = x, q+ , = f,(q) for t>o (2.6) 

is called the pure accumuIatiotz program. Clearly, for every feasible program 
(x,). we have 

(x,, c,, z,) < (f,, x,, x;) for t> 1. (2.7) 

A feasible program (x,) is inefficienf if there is a feasible program (xl) 
such that ci > c, for all t, and c: > c, for some t. It is called efJcient if it is 
not inefficient. 

For a positive integer, T, and a non-negative real number, 6,’ a T-program 
to b is a linite sequence (x,(T, b)) satisfying 

x,(T,b)=x; O,<x,+,(T,b),<f,(x,(T,b)) for O<t< T- I, 

x,+,(T,b)>,(l -d)x,(T,b) for O<t<T- 1: s,(T,b)>b. 
(2.8) 

Associated wth a T-program to b is a finite consumption sequence (c,(T, b)) 
given by 

c,+,(T,b)=S,(x,(T,b))-.u,+,(T,b) for O<t< T- 1, (2.9) 

and a finite gross investment sequence (z,(T, 6)) given by 

z(A ,(r, 6) =x,+, (T. 6) - (1 -d) x,(T, b) for O<t,<T- 1.(2.10) 

2 b. Preferences 

The preferences of the planner will be represented by a sequence of utility 
functions,” U, (where t = 1, 2 ,...) from R, to R.’ The following assumptions 
on U, will be used: 

(A4) For t > 1. u, is strict& increasing. 

(AS) For I > 1, u, is continuous and strict@ concave for c > 0. 

’ Here, T is to be interpreted as the (finite) planning horizon and b the target (end of’ 
horizon) capital stock. 

‘The important case treated in optimal growth theory is one in which there is a utility 
function, u, from R + to R. and a discourufictor u > 0, such that u,(c) = C? ‘u(c) for I > I. 
This is clearly covered as a special case of our analysis. 

‘This means that u,(O) is finite. Brock [I ] assumes that u,(O) = --CD. This case can be 
incorporated in our analysis by allowing the range of the utility functions to be the extended 
real line. Apart from some minor changes in the statements of the results. and in the definition 
of the value function, the analysis remains unaffected. 

6421291 I I2 
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A T-program to b, (xp(T, b)), is an optimal T-program to b if 

T  T  

for every T-program to b, (x,(T, b)). 
A feasible program (x,*) is a weakly maximal program if 

li,m if 2 [u,(c,) - u,(c:)] < 0 + I=1 

for every feasible program (x,). 

(2.11) 

(2.12) 

3. SOME PRELIMINARY RESULTS 

In this section we have collected some results which will permit the 
“sensitivity analysis” of the next section easier to present. These results are 
fairly straightforward to prove, but the proofs, written out fully, turn out to 
be long and tedious. Hence, all proofs in this section have been omitted. lo 

The first result establishes a boundedness property for T-programs. 

LEMMA 3.1. If (x,(T, 6)) is a T-program to 6, then 

(.q(T b), c,(T b), z,(T b)) < (n,, X,3 -f,), l<t<T. (3.1) 

The second result establishes the existence and uniqueness of an optimal T- 
program to b. 

LEMMA 3.2. There exists an optimal T-program to b if b < Xr. 
Furthermore, an optimal T-program to b is unique. 

At this point, it is useful to introduce the concept of a value function. We 
define the value function, V(T, b) by 

V(T, b) = sup 5 u,(c,(T, b)): (x,(T, b)) is a T-program to b, 
f=l 

11 

whereT> l,andO<b<x, . 

I0 The proofs can be obtained from the author, on request. 
I’ It is understood that the supremum is taken over all T-programs to b. 
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By Lemma 3.2, there is a T-program to 6, (x,*(T, b)), such that I’(T, b) = 

CT= 1 ~,(cl*V’~ b)). 
The next three results state the different implications of what is known as 

the “principle of optimality.” 

LEMMA 3.3. If (x:(T,b)) is the optimal T-program to b, then for 
1 <s ,< T, (x,*(T, b) ,..., x,*(T, b)) is the optimal s-program to x,*(T, b). 

LEMMA 3.4. If (x,+( T, b)) is the optimal T-program to b, and T > 2, then 

V(T, b) = V(T- 1, x,*-,(T, b)) + u,(c,*(T, 6)). (3.2) 

LEMMA 3.5. If (x,(T, b)) is a T-program to b, and T > 2, then 

W-, b) > V- Lx,-,(T, b)) + u,(c,(T, b)). (3.3) 

4. SENSITIVITY ANALYSIS 

In this section, we follow Brock [ 1 ] in his four-step procedure to arrive at 
the sensitivity result. These four steps may be summarized as follows12: 

(1) If we compare the T-optimal programs to two different target 
stocks, we find that at each date the input level of the T-optimal program 
with the larger target stock is larger, compared to the input level of the T- 
optimal program with the smaller target stock (Theorem 4.1). 

(2) If we compare the T-optimal program and the T + l-optimal 
program to the zero target stock, then at each date (up to T) the input level 
of the T + l-optimal program is larger than the input level of the T-optimal 
program (Theorem 4.2). 

(3) There is a feasible program (called the “limit program” 
henceforth) such that at each date, the input level of the T-optimal program 
to the zero target stock increases monotonically, and converges to the input 
level of the limit program as the horizon (T) increases to infinity 
(Theorem 4.3). 

(4) At each date, the input level of the T-optimal program to the 
target stock of b converges to the input level of the limit program, as the 
horizon (7) increases to infinity, provided the target stock of b is smaller 

‘* In summarizing the four-step procedure, we have used words like “larger” and “smaller” 
loosely; that is, without distinguishing between weak and strict inequalities. Precise statements 
are contained in the Theorems. 
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than the “smallest limit point” of the input levels of the limit program 
(Theorem 4.4). 

Results (3) and (4) together imply the following sensitivity result: the first 
period input level choice on a T-optimal program to a target stock 6, 
changes “little” with a change in the target stock b (provided b satisfies the 
bound specified in (4)) if the horizon T is “large enough.“‘” 

THEOREM 4.1 14. If (x,(T, b)) is the optimal T-program to b, and 
(x,(T, b’)) is the optimal T-program to b’, and b > b’, then 

x,(T, b) > x,(T, b’) for O< t < T. (4.1) 

Proof: We first show that 

x,(T, b) > x,(T, b’). (4.2) 

It should be mentioned that this is not obvious in the case of irreversible 
investment, since x,(T, b) need not equal b, and xJT, b’) need not equal b’. 
Suppose (4.2) is violated; then, x,(T, b’) > x&T, b) > b > b’. Then, clearly, 
(x,(T, b)) is a T-program to b’, so V(T, 6’) > V(T. 6). Also, (x,(T. b’)) is a 
T-program to b, so I’( T, b’) < V(T, b). Hence, we must have V(T, b) = 
V(T, b’), which proves that (x,(T, b)) is an optimal T-program to b’. This 
contradicts Lemma 3.2, since (x,(T, b’)) IS an optimal T-program to b’, and 
x7(7’, b’) # x,(T, b). This establishes (4.2). 

TO prove (4.1), suppose this is violated for some t. Let s be the last period 
for which the violation occurs. Then, by (4.2), s < T - 1, so s + 1 ,< T, and 
x>+,(T, 6) >x,+,(T, b’), while x,&T, b) <x&T, b’). By Lemma 3.3, 
t.q,(K b),..., x,x+ ,(K b)) is the optimal (s + 1)program to x, + ,(T, b); 
similarly, we know that (x,(T, b’),...,x,+,(T, b’)) is the optimal (s + 1). 
program to x,+ l(T, b’). 

If x,+,(T, b)=x,+,(T, b’), then by Lemma 3.2, x,(T, b) =x,~(T, b’), a 
contradiction. Thus, we must have x, + ,( T, b) > x, + ,( T, 6’). Now, using 
Lemma 3.4, we have 

v(s + 1, x,+,(T, b)) = V, x,G’-, 6)) + a,+ ,(c,y+ ,(T, b)). (4.3) 

Consider the finite sequence (x6,..., xi+ ,) given by: xi = x,(T, b’) for 
t = 0 ,..., s; xi+ , =x,+ ,(T, 6). Then. x~+,=x,+,(T,b)>x,+,(T,b’)Z 
(1 -d) x&T, b’) = (1 - d)x;. Also xi+, = xs+,(T, b) < f,(x,(T, b)) < 

” Of course, the result does not apply only to thefirst period input level choice. but to any 
fixed finite number of periods (1,2..... k). 

” The proof of Theorem 4.1 leans heavily on the technique used in Dechert and Nishimura 
14. Theorem 11. 
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fs(xs( r, b’)) = f,(x;). Hence, (x6 ,..., xf + ,> is a (s + 1 )-program to x, + 1 (K 6). 
So, by Lemma 3.5, 

vts + 1, x3+ I(T, b)) > vs, x,tc 6’)) + us+, [f,(x,(T, b’)) - x,yt ,(T, b)]. (4.4) 

Using Lemma 3.4, we also have 

V(s 4 1, x,+ ,(I-. b’)) = w, x,(K b’)) + us+ ,(c,+,(K b’)). (4.5 1 

Consider the finite sequence (x~,...,x$+ ]) given by: x:’ =x,(7’, b) for 
t=O ,..., s; x:+~ =xs+,(T,b’). Then, x;+, =xs+,(T,b’)> (1 -d)x,(T,b’)> 
(1 - d) x,(T, b) = (1 - d)xl’. Also, xs;, =x,+1 (K b’) < x,+ ,(T 6) < 
S,(x,(T, b)) = f,(x,F). Hence, (xi ,..., xc+ ,) is a (s + 1 )-program to x,~+ , (T, 6’). 
So, by Lemma 3.5, 

US + l’xst ,tT, b’)) 2 J’ts, x,stT, b)) + u,+,[f,(x,(T, b)) -x,+,(T, b’)J. (4.6) 

For convenience, denote c,, ,(T, b) by a, c,+ ,(T, 6’) by a’; also denote 
If,tx,V~ 0) - x,t IV, b)l by e, and [f,(x,(K b)) -x,+ ,(T, b’)] by e’. Then, 
using (4.3) and (4.5), we have 

V(s + Lx,+ ,(T. b)) - V(s, x&T. b)) + V(s + 1, x,+ ,(T, b’)) - V(s, x,(T, b’)) 

=24 s+ I(Q) + us, ,(a’>. (4.7) 

Also, using (4.4) and (4.6), we have 

V(s + 1, x,t ,(T, b)) - V( s, x,tT, b’)) + V(s + 1, x,+ I(T, b’)) - V(s, x,(T. b)) 

> us+ ,te) + us+ ,te’). (4.8) 

Combining (4.7) and (4.8), we have 

%+I@) + 4tl(~‘)>u,+,(e) + us,,@‘). (4.9) 

By definition of e and e’, we have 

e + e’ = f,(x,(T, b’)) - x,+ , 0-3 b’) +.&t-W-~ b)) -x.7+ ,G’-3 b) t4 1o) 

=C s+ ,tT b’) + c,+ ,(T, 6) = a + a’. 

Since x,(T, b’) > x,(7’, b), and x,+,(T, b) > x,+ ,(T, b’), so a < e < a’. Hence, 
there is a real number, 8, such that 0 < 19 < 1, and e = Bu + (1 - B)u’. Then, 
using (4. IO), we also have e’ = (1 - @)a + 6~‘. Thus, we have u,, ,(e) > 
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%+,(a) + (1 - 0) u,+,(a’); also, u,+,(d) > (1 - 0) U,+,(Q) + &+,(a’>. 
Combining these last two inequalities, we have 

u,+&9 + us+&‘) > u,+,W + u,+,W. 

But (4.11) contradicts (4.9), and this establishes the theorem. 

(4.11) 

THEOREM 4.2. If (x,(T,O)) is the T-optimal program to zero, and 
(x,(T + LO)) is the (T + 1)-optimal program to zero, then 

x,(T 0) < x,(T + 1, 0) for O< t < T (4.12) 

Proof. We will show that 

xT(T, 0) < xT(T t 1, 0). (4.13) 

Suppose that (4.13) is violated. Consider the finite sequence (x(,,..., xi+ ,) 
given by: xi = x,(T, 0) for t = 0 ,..., T, x;,, = (1 - d)x;. Then, xk+, = 
(1 -d)x,(T,O)<f,(x,(T,O))=.f&). Thus, (x&,xk+,) is a (Tt l)- 
program to zero, and c; = cl(T, 0) for t = O,..., T; cb+, = fr(x,(T, 0)) - 
(1 - d)x,(T, 0) = g,(x,(T, 0)) > g,(x,(T + l,(V) > c,, ,(T+ l,O>. 

Now, (x,(T t 1, 0) ,..., x,(T $ LO)) is a T-program to zero, so 

i u,(c,(T, 0)) > i u,(c,(T + LO>>. 
I=1 I=1 

(4.14) 

Using (4.14), we then have 

TtI T+1 

2 u,(c;) > s u,(c,(T+ 1,O)). (4.15) 
t=1 f=l 

But (4.15) contradicts the fact that (x,(T + 1,O)) is the (T+ 1)-optimal 
program to zero, and this establishes (4.13). Now, (4.12) follows directly, by 
using Theorem 4.1. 

THEOREM 4.3. There exists a unique feasible program (XT), such that if 
(x,(T, 0)) is the T-optimal program to zero, then for t > 0, 

x,(T, 0) -+ XI” us T+ a~. (4.16) 

Proof: For each t > 0, we have xt(T, 0) < x,(T+ 1,0) by Theorem 4.2. 
Hence, x,(T, 0) is monotonically non-decreasing in T. By Lemma 3.1, 
x,(T, 0) < & for all T. Hence x,(T, 0) converges to some non-negative real 
number, call it XT, as T increases to infinity. Using (2.2) and (2.8) it is 
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straightforward to check that (x;“) is a feasible program. The uniqueness of 
(XT) is clear from the above proof. 

Given the feasible program (x,?), we define b* = lim inf,,, x,!. 

THEOREM 4.41s. If 0 Q b < b*, and (x,(T, 6)) is the T-optimal program 
to b, then for each t > 0, 

x,(T, b) 4 x:: as T+ 03. (4.17) 

ProoJ: By definition of b*, there is T,,, such that XI” > b for t > T,,. By 
Theorem 4.3, for each T > T,, , there is a positive integer N (depending on r), 
such that N > T, and x&V, 0) > b. By Lemma 3.3, (x&V, 0) ,..., x&V, 0)) is 
the T-optimal program to x,(N, 0). Also, (x,(T, b)) is the T-optimal program 
to b. So, by Theorem 4.1, we have x,(7’, b) < x&V, 0) for 0 < t < T. Also by 
Theorem 4.1, x,(T, b) > x,(T, 0) for 0 < t < T. Combining these last two 
pieces of information, we have 

x,(T, 0) < x,(T, b) < x,(X 0) for 0 <t ,< T. (4.18) 

Let T-+ co; then N-+ co also. By Theorem 4.3, for each t, x,(T, 0) -+ XT, and 
x,(N, 0) + ~7. So, by (4.18), x,(7’, b) -+ XT as T-+ co. This establishes (4.17). 

5. WEAK-MAXIMALITY OF THE LIMIT PROGRAM 

It is of interest to know whether the limit program established in Section 4 
is weakly maximal. More generally, it would be useful to know the 
relationship between the limit program and a weakly maximal program 
(provided one exists). 

It is straightforward to provide an example in which the limit program is, 
in fact, inefficient and, hence, not weakly maximal. 

EXAMPLE 5.1. Let g,(x)=x, for t>O, u,(c)=c/(l +c) for t> 1, d= 1, 
x = 1. Given any T > 1, the T-optimal program to zero (x,(T, 0)) must 
satisfy: c,(T, 0) = l/T for t = l,..., T. Thus the limit program (x,*) must 
satisfy CT = 0 for t 2 1. Thus, the limit program is inefficient and hence not 
weakly maximal. 

The wary reader might not be convinced by Example 5.1, since d = 1 

I5 By putting d= 1 in the present framework, we obtain the mathematical form of the 
model studied by Brock [ I]. (This statement should not, of course, be interpreted to mean that 
in Brock’s model, capital is assumed to be completely non-durable). Hence, the sensitivity 
result obtained in this note is a generalization of Brock’s result, and his sensitivity result can 
be obtained as a corollary of Theorem 4.4. 
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implies that we are really in the reversible world. The next example settles 
the issue, for the “genuine” irreversible model. 

EXAMPLE 5.2. Let g&) =x,/2 for t > 0, Us = 2O’[c/( 1 + c)], d = & 
x = 1. Given T > 2, a T-optimal program to zero (x,(T, 0)) must satisfy: 
c,(T, 0) = 0 for t = l,..., T - 1, and c,(T, 0) = f . Thus, the limit program 
(x,*) must satisfy: c,= 0 for t > 1. Thus, the limit program is inefficient and 
hence not weakly maximal. 

Brock [ I] showed that when investment is reversible, if there does exist a 
weakly maximal program then it must be the limit program. (See [ 1. 
Corollary 2, p. 801.) This result remains valid in our framework (see 
Theorem 5.1 below), but Brock’s method of proof has to be abandoned. In 
order to establish his Corollary 2, Brock proved the following result: if 
(x,(T, b)) is a T-optimal program to b and (x,(T, 6’)) is a T-optimal 
program to b’, and b > b’, then c,(T, b) < c,(T, b’), t = l,..., T. (See [ 1, 
Theorem 1, p. 771.) When investment is irreversible, this monotone property 
of consumption no longer holds (though that of inputs holds, as we verified 
in Theorem 4.1). An example settling this issue appears in Majumdar and 
Nermuth [ 7 1.‘” Thus, we are forced to use a new method of proof, which, 
fortunately, turns out to be fairly simple. 

THEOREM 5.1. If there exists a weakly maximal program (20, then 
fr =x,* for t > 1, where (x:) is the limit program obtained in Theorem 4.3. 

Proof. Denote, for T > 1, the T-optimal program to zero by (f,(T, 0)). 
First, we claim that for each T > 1, 2, > Zr(S, 0) for S > T. Pick any 

T > 1. Then for S > T, (f,, ,..., fs) is the S-optimal program to f,Y. Since 
Zs > 0, so by Theorem 4.1, x”, > Zt(S, 0) for t = l,..., S. In particular, 
2, > qs, 0). 

Next, we claim that for each T > 1, 

Pick any T> 1. Then for S > T, (&(S, O),..., Zr(S, 0)) is a T-optimal 
program to Z,(S, 0). Also 2, > iT(S, 0) by the above argument, so 

(5.2) 

I6 This paper also contains an excellent analysis of sensitivity and turnpike (asymptotic 
stability) results when investment is irreversible and there are non-convexities in the 
production set. 
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Since Zt(S, 0) -+ c,* (for t = I,..., r) as S -+ 03, so by (5.2), (5.1) follows 
immediately. 

Next, we claim that (x,*) is weakly maximal, If not, there is a feasible 
program (x,), a positive number (x, and an integer T* > 1, such that 

(5.3) 

Using (5.1) and (5.3) contradicts the weak-maximality of (..F!). Thus (x:) is 
weakly maximal. 

NOW, suppose CT #C; for some t = s. Then, consider a sequence 
x, = f(~: + gt), for t > 0. Then (x,) is a feasible program, and 
c, > $(c,* + C;) for t 2 1. Consequently, u(c,) - u(C;) > +u(c,?) + $u(E~) - 
u(C;) = $[u(cp) - u(C;)] for t > 1; also, u(c,) - ~(67,) > $f(cF) + +u(t;) - 
u(c,) = i[u(c,*) - u(C;)] for t = s. Thus there is TX > 1. and (r > 0, such that 

; [u(c,) - u(c;>] > a + ; $ [I+,*) - IQ,)] for T> T*. 
1-I I- I 

Using (5.1) contradicts the weak maximality of (9,). Thus c,* = C; for t > 1, 
and so x*=2 for t>O. 

As a f:nal rdmark,<e note that Brock [I] showed that when investment is 
reversible, if the limit program is efficient, it is weakly maxima1 (see his 11, 
Corollary 3, p. 811, and his remarks following it on p. 82). This result 
exploited the shadow price properties of optimal and efficient programs. In 
our framework, we feel that this issue cannot be explored fully until a 
complete duality theory is developed for optimal and efficient programs 
when investment is irreversible. This, of course, is beyond the scope of this 
note. We refer the reader to the paper by Mitra and Ray 181, which 
addresses this and related issues. 
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